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Health Care Expenditures and Longevity:
Is there a Eubie Blake Effect?

Friedrich Breyer⇤, Normann Lorenz† and Thomas Niebel‡

July 12, 2012

Abstract

It is still an open question whether increasing life expectancy as such is causing higher
health care expenditures (HCE) in a population. According to the “red herring” hypothesis,
the positive correlation between age and HCE is exclusively due to the fact that mortality
rises with age and a large share of HCE is caused by proximity to death. As a conse-
quence, rising longevity – through falling mortality rates – may even reduce HCE. How-
ever, a weakness of previous empirical studies is that they use cross-sectional evidence to
make inferences on a development over time. In this paper we analyse the impact of ris-
ing longevity on the trend of HCE over time by using data for a pseudo-panel of German
sickness fund members over the period 1997-2009. Using (dynamic) panel data models,
we find that age, mortality and five-year survival rates have a positive impact on per-capita
HCE. Our explanation for the last finding is that physicians treat patients more aggressively
if they think the result will pay off for a longer time span, which we call “Eubie Blake ef-
fect”. A simulation on the basis of an official population forecast for Germany is used to
isolate the effect of demographic ageing on real per-capita HCE over the next decades.
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If I’d known I was going to live this long,
I would have taken better care of myself.

(Eubie Blake on his alleged 100th birthday)

1 Introduction

The ageing of population in most OECD countries will place an enormous burden on tax payers
over the next decades. Given this demographic change, previous fiscal policies in several of
these countries were unsustainable, and major reforms of social insurance systems have been
enacted, in particular with respect to public pension and long-term care financing systems.
However, what remains unclear is whether population ageing also jeopardizes the sustainability
of social health insurance (see, e.g. Hagist and Kotlikoff (2005) and Hagist et al. (2005)). While
there is no doubt that the revenue side of these systems will suffer from the shrinking size of
future taxpayer generations, it is not so clear if rising longevity will place an extra burden on the
expenditure side. If so, additional reforms of these systems would be necessary to guarantee
the sustainability of these systems, such as introducing more funding or limiting the generosity
of benefits.

The impact of population ageing on health care expenditures (henceforth: HCE) has been
heavily debated over the last decade.1 That a positive association of age and HCE is primarily
due to the high cost of dying and rising mortality rates with age, was first observed by Fuchs
(1984). Subsequently, Zweifel et al. (1999) have coined the term “red herring” to character-
ize the erroneous conclusion from this cross-section correlation that population ageing due to
increasing longevity implies rising country level HCE over time. As counter-evidence they
showed that in individual data – when controlling for proximity to death – calendar age is not
even a significant predictor of health care costs.

Although this early study suffered from its focus on patients in their last year of life, sub-
sequent studies by several authors such as Stearns and Norton (2004), Seshamani and Gray
(2004), Zweifel at al. (2004) and Werblow et al. (2007) confirmed the red herring hypothe-
sis by demonstrating that even for persons who survived for at least four more years, there
is hardly any age gradient in HCE, whereas the costs of the last year of life tend to decrease
with the age at death (Lubitz et al. (1995)). The latter finding is explained by the tendency of
physicians to treat patients who have lived beyond a “normal life-span” less aggressively than
younger patients with the same diagnosis and the same survival chances. In this vein, Miller
(2001) shows by simulation that, based on a negative relationship between age at death and
death-related costs, an increase in longevity will dampen the growth of HCE.

However, an important weakness of almost all studies in the related literature is their reliance
on cross-section expenditure data. Therefore, in drawing inferences from these studies for the
development of HCE over time, proponents of the red herring hypothesis commit the same
error of which they accuse their opponents (i.e. those who believe that population ageing in-
creases health spending because per-capita expenditures increase with age). In particular, they
overlook the fact that increasing longevity not only means that 30 years from now average age
at death will be higher, but also that people at a certain age (say, 80) will on average have more
years to live than present 80-year olds.

It is reasonable to assume that physicians, who have to allocate scarce resources among their
patients, will make a conjecture how long a patient will benefit from a treatment (such as
implanting an artificial hip), and this depends upon the patient’s expected longevity. In that

1A recent survey can be found in Karlsson and Klohn (2011).
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respect, the physician will behave in a way described in the famous quotation by Eubie Blake,
i.e. he will spend more on patients who will profit from his treatment for a longer time period.2

This effect will lead to a similar physician behaviour as “age-based rationing” of health care
services when the notion of a “normal life span” (Callahan (1987), Daniels (1985)) shifts over
time with rising longevity. Indeed, the empirical literature shows that some physicians use
age as a prioritization criterion in allocating scarce health care resources (for an overview see
Strech et al. (2008)).

This reasoning suggests that the relationship between ”life expectancy” or “time to death”
and HCE is non-monotonous: in the very last years of life, a lower value of these variables
indicates worse health and therefore higher HCE, e.g. for emergency treatment and heroic
efforts to avoid the unavoidable. In individual data, this effect can be captured by a dummy
for “last year of life” and in group data by the share of persons who died in the particular year,
i.e. the mortality rate. In contrast, when time to death is longer (say, between 5 and 10 years),
a higher value indicates a better chance to benefit from elective surgery and other potentially
risky procedures for a longer time and thus leads to higher HCE, as argued above. This “Eubie
Blake effect” can be captured in group data by including a measure for longevity, holding the
mortality rate constant.

To test whether there is a “Eubie Blake effect”, it is desirable to study how rising life ex-
pectancy in a population has affected health care expenditures over time. This requires a data
set that comprises this variable, or an indicator of it, and covers several years.

To our knowledge, there have been only three previous studies which have used life expectancy
as an explanatory variable in a regression equation for HCE, viz. Shang and Goldman (2008),
Zweifel et al. (2005) and Bech et al. (2011), of which the first one used individual-level data,
the other two population-level data.

Shang and Goldman (2008) used a rotating panel of more than 80,000 Medicare beneficia-
ries and predicted the life expectancy for each individual, based on age, sex, race, education
and health status and then performed a nonlinear-least-squares estimation of individual HCE.
In this equation, predicted life expectancy turned out to be highly significant and negative,
whereas age became insignificant when this variable was included. The interpretation of this
result is, however, very similar to other studies in the red herring literature because predicted
life expectancy, if the value is low (say, a few years), is a proxy for time to death.

Zweifel et al. (2005), in contrast, used a panel of 17 OECD countries over a period of 30 years
(1970-2000) and tried to jointly explain HCE and life expectancy. As one of the determinants
of HCE, they constructed an artificial variable “SISYPH” (for Sisyphus effect) by multiplying
“life expectancy at 60” (averaged over both sexes) with the share of persons over 65 in the
total population. The predicted value of this variable turned out to be a significantly positive
predictor of HCE. A problem with this result is that it does not allow disentangling the effects
of the old age dependency ratio and life expectancy itself.

Bech et al. (2011) considered per-capita HCE for a panel of 15 EU member states over the
period 1980 to 2003 and found that both mortality and remaining life expectancy at age 65
have a significant positive effect on HCE in the following year. They then calculated long-
run elasticities of HCE with respect to these variables and found a positive value only for life
expectancy, so that a linear increase in life expectancy at 65 is associated with an exponential
growth in per-capita HCE.

2Fang et al. (2008) attribute the same quotation to the baseball star Mickey Mantle and speak of a “Mickey Mantle
effect”. However, it is quite clear that Mantle did not invent the sentence, but quoted the football player Bobby Lane,
who died in late 1986 and may well have known the statement by Blake, which was made already in February 1983.
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In this paper, we aim at disentangling the two effects of rising longevity, i.e. the “direct”
effect of decreasing HCE (at a certain age) due to a falling mortality rate (at that age) and the
“indirect” effect of increasing HCE due to an increase in the remaining life expectancy at that
age (conditional on surviving until the end of the year). To do so we employ a measure for
remaining life expectancy, which is especially common among physicians: (expected) 5-year
survival rates. In medical studies, in particular those concerned with specific diseases, this
measure is used instead of life expectancy as such.

The data set we employ is a pseudo panel of sickness fund members in Germany, which was
originally collected for calculating age and sex specific (average) HCE for purposes of risk ad-
justment. This data set, which covers the years 1997 to 2009, is merged with data on mortality
rates published annually by the Human Mortality Database. We are convinced that population-
level data are suitable for estimating such an effect because the controversy on the red herring
effect – even though many authors use individual data to make their point in this debate – is
focused exactly on the question whether population ageing will lead to increasing HCE in a
country, thus jeopardizing the fiscal soundness of publicly financed health systems.

To determine the impact of longevity we estimate (dynamic) panel data models; to disentangle
age, period and cohort effects, we apply the Intrinsic Estimator (Yang et al. (2008)), which is
a special case of a partial least squares regression (Tu et al. (2012)). We then use the estimated
relationship to show the effect of an increase in survival rates according to official statistics on
average HCE. We find that while falling mortality rates as such lower HCE, this effect is more
than compensated by an increase in remaining life expectancy so that the net effect of ageing
on HCE over time is clearly positive.

The remainder of this paper is organized as follows. In Section 2 we describe the data, in
Section 3 we state the theoretical hypotheses to be tested, in Section 4 we explain the method-
ology of estimating the determinants of HCE, in Section 5 we present the regression results, in
Section 6 we perform a simulation of the future development of HCE, and Section 7 concludes.

2 Data

The data used in this study come from three different sources. Data on HCE were provided
by the German Federal (Social) Insurance Office (“Bundesversicherungsamt”, BVA). To deter-
mine the risk adjustment payments for the statutory sickness funds, each year the BVA collects
data on all expenditures covered by the sickness funds for all individuals insured in the social
health insurance system. These data comprise eight major expenditure categories including
inpatient care, ambulatory care, dental care and prescription drugs. Based on this census, the
BVA calculates and publishes the average HCE for all sickness fund members, separately for
each age-sex group.3 It also publishes the number of individuals in each group.4

Data on age and sex specific mortality rates are taken from the Human Mortality Database
(2011), and were used to calculate 5-year survival rates. These data apply to the German
population as a whole and not only to sickness fund members. Since the omitted group, the
privately insured, have on average higher incomes, and life expectancy is positively associated
with income in Germany (von Gaudecker and Scholz (2007), Breyer and Hupfeld (2009)), the

3The official risk adjustment data, which the BVA publishes on its website, are smoothed. We use the unsmoothed
data and thank Dirk Göpffarth, the Head of the Risk Adjustment Unit at BVA for making this data set available to us.

4To be more precise, the variables are average HCE per day and number of person-days, i.e., the number of
insured times the average number of days per year an individual of this age-sex group is insured. In addition, the data
set contains these two variables also separately for the two regions East and West Germany, however only until 2007.
Since 2008 there is no distinction according to region in the risk adjustment scheme any more.
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population-based survival rates are somewhat higher than the true survival rates of sickness
fund members, but this error should be rather small given that sickness fund members account
for about 90 per cent of the German population.

In the HCE data set provided by the BVA, the highest age group contains the average HCE of
all individuals of age 90 and above. Since we have no information about the age distribution
within this group, we could not compute their average mortality and survival rate. We therefore
drop this group, which amounts to a loss of 0.71% of all person-days.

Our data set comprises the period 1997 to 2009. As there are 90 age groups (0 to 89) for men
and women separately, the total number of observations is 2340. Table 1 contains descriptive
statistics on the data set. Since we perform the estimations separately for men and women, we
present these statistics separately, too. For men, average HCE per day range from e 1.78 (at
age 3 in 1997) to e 17.60 (at age 89 in 2009).

Table 1: Descriptive Statistics of the Data Set

Men Women

mean std.dev. min max mean std.dev. min max

Age 44.5 0 89 44.5 0 89

Cohort 1958.5 1908 2009 1958.5 1908 2009

HCE 6.2437 4.7329 1.7812 17.6005 6.1312 3.8728 1.5020 15.7070

MORT .0233 .0437 .00007 .2275 .0153 .0321 .00005 .1711

SR5 .8785 .2021 .1687 .9996 .9117 .1685 .2603 .9997

Table 2 presents 5-year survival rates for selected age groups in the base year 1997 and their
increase over time until 2009. The table shows that there is a great amount of variation in
these rates both over time and across age groups. In particular, between 1997 and 2009, 5-
year survival rates have been increasing by up to 9 percentage points for men; for women the
increase is smaller but still up to 5.6 percentage points.

Table 2: 5-year survival rates: Level in 1997 (per cent) and increase � from 1997 to 2009
(percentage points)

Men Women

SR5 SR5

Age 1997 � 1997 �

60 91.1 2.4 95.9 0.8

65 86.1 4.3 93.2 1.9

70 79.1 5.9 88.3 3.4

75 67.9 6.9 79.5 4.6

80 51.2 9.0 64.6 5.6

85 31.6 8.6 43.6 4.7

90 14.0 4.0 22.1 1.1
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The third source of data for our study is the German Statistical Office. Every three years, it
publishes forecasts on the size and composition of the population in Germany over the fol-
lowing decades. The most recent one is the “12th coordinated population projection” (Statis-
tisches Bundesamt 2009). In addition, the Office provided estimates of the development of
age-specific mortality rates over the period until 2060. From these data, we calculated the time
paths of age-specific survival rates. Of the two published forecasts, the one denoted the “most
likely one” by the Office and the one with an even stronger increase in longevity, we use the
“most likely one”. These data were used for simulating the demographic effect on HCE in
Section 6.

3 Testable Hypotheses

The main focus of the paper will be the effect of “population ageing”, expressed by falling mor-
tality rates and increasing life expectancy, on average HCE of a population group. However,
age and time will be used as explanatory variables in the regression as well. The following
theoretical predictions are derived from the literature and will be tested in the empirical esti-
mation:

Age: According to more “traditional” theory, HCE will be decreasing with age in the age range
0-20, approximately constant between 20 and 60 and increasing with age for age above 60.
In contrast, the alternative hypothesis on which the red herring claim is based states that HCE
will be independent of age for age above 20.

Time: HCE will be increasing over time due to medical progress.

Mortality: As for individuals expenditures are especially high in the last year of life, average
HCE of a population group will be increasing in the mortality rate (MORT ) of the group.

Life expectancy: Holding the mortality rate of an age group constant, HCE of this group will
be increasing in the remaining life expectancy within the group as physicians will spend more
resources on patients who have “more to gain” from an intervention. This “Eubie Blake effect”
is especially important for older patients.

Throughout this paper, “life expectancy” will be measured by the 5-year survival rate SR5 (of
each age group), which is a familiar concept for physicians. Using the 5-year survival rate
has an important advantage over the variable “life expectancy” itself: In younger age groups
life expectancy falls almost linearly with age, whereas 5-year survival rates vary very little
with age and start falling only later. Here the variance with age and over time occurs almost
exclusively in older age groups, and the effect of this on HCE is exactly what we want to test.
We note that technically the 5-year survival rate at age a in year t conditional on surviving at
least until the end of year t is calculated by multiplying the one-year survival rates (i.e. one
minus the mortality rate) of age groups a+ 1, a+ 2, . . . , a+ 5 in year t. This corresponds to
the usual way remaining life expectancy for an age group is calculated.

For the following reason we do not use the 5-year survival rate SR5 as such but a predicted
value of it. We argued that a physician will take the 5-year survival rate into account when
deciding whether to perform an expensive or risky procedure or on which patients to ration
(most). However, during the year t, the physician does not know the 5-year survival rate
SR5c,a,t, as this is a measure derived from the mortality rates in the same year, which are
not known until the end of the year. It is therefore an informed guess of the survival rate the
physician will have in mind. One possible proxy for this guess would be the value of this
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variable in the previous year (for the same age), SR5c�1,a,t�1, but this is certainly not the best
choice: First, survival rates are increasing over time, so there would be a systematic downward
bias in this proxy. Secondly, as the survival rate in a particular year t � 1 is derived from the
mortality rates of 5 different age groups in t�1, they may depend heavily upon singular events
such as a flu epidemic or a heat wave. These singular events will however have no (or only
a minor) effect on the informed guess of the physician. Rather, it will depend on his or her
experience over a longer time period, so we use a linear projection of the survival rate (for the
same age) of the previous five years.5 In the following, whenever we use the symbol SR5, we
refer to this prediction of the 5-year survival rate.6

4 Estimation Strategy

Before we present the estimation strategy, we give an overview of how we denote the different
variables used in the regressions:

• HCEc,a,t (dependent variable), the average value of daily health care expenditures of
all insured persons in cohort c of age a in year t, converted to Euros of 2009 by using
the consumer price index;

• a set of dummy variables Agea for each age a with a = 0, . . . , 89;

• a set of dummy variables Cohortc for each cohort c with c = 1908, . . . , 2009, (the year
in which the person was born);

• a set of dummy variables Yeart for each year t with t = 1997, . . . , 2009;

• MORTc,a,t, the mortality rate, i.e. the share of persons in cohort c of age a in year t
who die within that year;

• SR5c,a,t, the predicted 5-year survival rate of all persons in cohort c of age a in year t.

As each entry in HCE, MORT and SR5 contains the average values of a particular age-sex-
group, our data set is a “pseudo panel” in the sense of Deaton (1985). For these pseudo panels,
Verbeek and Nijman (1992) have shown that for a sufficiently large number of individuals in
each group, the group averages are unbiased estimators of the “true” value in the population.

To describe the estimation strategy, we begin with the general specification

HCEc,a,t = g(c, a, t) + �1MORTc,a,t + �2SR5c,a,t + uc,a,t, (1)

where g captures the effects of cohort, age and time, and uc,a,t denotes the error term. There
is no dummy variable included for sex, because we perform all estimations separately for men

5Technically, we run a regression of (SR5c�5,a,t�5, . . . , SR5c�1,a,t�1)0 on a constant and a linear time trend,
i.e.

SR5c�⌧,a,t�⌧ = µ0 � µ1⌧ for ⌧ = 1, . . . , 5,

and determine the prediction as [SR5c,a,t = µ̂0 � µ̂1 · 0 = µ̂0. For each prediction a separate regression is per-
formed. As these equations are estimated for every age, there is implicitly an interaction between age and year in this
estimation. In contrast, there is no age-year interaction term in the equation for HCE, which solves the identification
problem.

6One might be concerned that because MORT and SR5 are highly correlated the effect of the two variables
cannot be disentangled empirically. The regression results reported in Section 5, however, show that this concern is
not justified: standard errors are quite small and the coefficients of both variables for men and at least of SR5 for
women are (highly) significant in all models.
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and women, since – as it is well known – the age profiles of HCE have rather different shapes
for men and women.

The specification in (1) suffers from the familiar problem of perfect multicollinearity since age
equals year minus cohort:

a = t� c. (2)

Because we want to estimate the effects of cohort, age and time in a flexible manner, we follow
the dummy-variables approach and set

g(c, a, t) = �0 +
X

c

�cCohortc +
X

a

↵aAgea +
X

t

�tYeart, (3)

where in each set of the dummy variables one variable is skipped because of the constant term.

Of course, the problem of perfect multicollinearity applies to the dummy variables specifica-
tion as well. There are in principle two strategies to deal with this problem: The first one is to
drop one of the variables (or set of dummies for) age, cohort or time and for example estimate
a model with only age- and year-dummies. Because our data set is a pseudo panel where the
“individuals” are cohorts, this variable cannot be dropped in our analysis. Obviously, neither
the age effect nor the year effect (medical progress) can be dropped, either.

The second strategy then is to impose a restriction on the coefficients �, ↵ and �.7 One can
distinguish two ways to do so: In most cases, one of the coefficients is set to zero, or two
– usually but not necessarily adjacent – coefficients are set equal. E.g. with �2000 = �2001, it
is assumed that there is no time effect going from the year 2000 to 2001; with ↵20 = ↵21, it is
assumed that 20 and 21-year-olds have equal health care expenditures. If one can be confident
that the assumption is valid, this will correctly disentangle the age, period and cohort effects.

However, as shown by Yang et al. (2008), the resulting estimates can be seriously misleading,
if the assumption is not warranted. In fact, in our data the estimates are very sensitive to which
two coefficients are set equal: If, for example, we assume ↵23 = ↵24, the year dummies
indicate a positive time trend; this reverses for ↵24 = ↵25, so that HCE are estimated to
decrease over time. For ↵25 = ↵26, the time trend is again positive.8 This lack of robustness
is a strong reason for discarding this solution to the multicollinearity problem.

The second way to impose a restriction on �, ↵ and � is the following: The problem in es-
timating (1) with g(a, c, t) replaced by the set of dummies as shown in (3) is that the well
known least squares formula (X 0X)�1X 0 HCE, (where X is the matrix containing all the
explanatory variables) cannot be applied because X 0X is a singular matrix that cannot be in-
verted. However, an infinite number of generalized inverse matrices exist. A particular one is
the Moore-Penrose inverse, which, as Tu et al. (2012) point out, is to be preferred, because it
minimizes the variance of the least squares solution. More importantly, they show that the re-
sults using the Moore-Penrose inverse correspond to the results of both a Principal Component
Regression and a Partial Least Squares Regression if the maximum number of components is
used, and also coincides with the Intrinsic Estimator proposed by Yang et al. (2008).9

7Of course, dropping one of the variables means imposing the restriction that all coefficients on this variable are
zero. However, since this is usually not made explicit, we mention it as a separate way to deal with the problem of
perfect multicollinearity.

8The time trend is estimated to be negative if the coefficients are set equal for ages 6/7, 7/8, 13/14, 14/15, 15/16,
16/17 or 24/25 for men, and similarly for women.

9However, because of the way the Intrinsic Estimator is implemented in STATA’s apc ie command, in practice the
estimates of the Intrinsic Estimator may differ somewhat. In our data, we find the difference between the estimates
using the Partial Least Squares Regression procedure of the software package R and STATA’s apc ie command to be
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The restriction on the coefficients �, ↵ and � that is effectively imposed by these methods is
that the effect of age and cohort is set equal to the effect of time, (for the following exposition
see Tu et al. (2012)): With the continuous variables a, c and t for age, cohort and time, the
restriction inherent in the variables is c + a = t; the same restriction is then imposed on the
coefficients: � + ↵ = �.

The equivalent restriction inherent in the dummy variables is

X

a

✓
a� A+ 1

2

◆
Agea +

X

c

✓
c� A+ T

2

◆
Cohortc =

X

t

✓
t� T + 1

2

◆
Y eart, (4)

(where A is the number age dummies and T the number of year dummies), which, when
translated to the coefficients yields:

X

a

✓
a� A+ 1

2

◆
↵a +

X

c

✓
c� A+ T

2

◆
�c =

X

t

✓
t� T + 1

2

◆
�t. (5)

Instead of imposing the restriction that one of the coefficients is zero, or two coefficients are
equal, the constraint is in a sense “spread more evenly over all coefficients.” This, as already
mentioned, minimizes the variance of the least squares solution.

Before we proceed, it is important to note that the restriction imposed on �, � and ↵ has no
influence on the coefficients of all the other covariates: Regardless of whether one coefficient
is set equal to zero, or two coefficients are set equal, or the Intrinsic Estimator is used, �̂1 and
�̂2 will always be the same. That means that the coefficients we are most interested in are
not at all affected by how the collinearity problem is solved. As a consequence, the predicted
values \HCE also do not depend on which restriction is imposed.10

To have a comparison model as it is used by the proponents of the red herring hypothesis we
first estimate (using the Intrinsic Estimator)

HCEc,a,t = �0+
X

c

�cCohortc+
X

a

↵aAgea+
X

t

�tYeart+�1MORTc,a,t+uc,a,t. (6)

We than add the five-year survival rate to estimate (again using the Intrinsic Estimator)

HCEc,a,t = �0 +
X

c

�cCohortc +
X

a

↵aAgea +
X

t

�tYeart + �1MORTc,a,t

+�2SR5c,a,t + uc,a,t. (7)

There are two possible reasons why (7) may still be misspecified: First, the true relationship
may be dynamic so that there is persistence in HCE. To account for this problem, we also
estimate the following dynamic panel model:

HCEc,a,t = �HCEc,a�1,t�1 + �1MORTc,a,t + �2SR5c,a,t

+
X

c

�cCohortc +
X

a

↵aAgea +
X

t

�tYeart + uc,a,t. (8)

negligible. Since we perform the other regressions in STATA, we used the Intrinsic Estimator.
10This is an application of the Frisch-Waugh-Lowell-Theorem, see Davidson and MacKinnon (1993), Chapter 1.

No matter which restriction is imposed on �, � and ↵, the subspace spanned by (3) is always the same.
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Secondly, the variables may be non-stationary so that there may be the problem of spurious re-
gression. For this reason we tested for unit roots. Since these tests do not reject non-stationarity
in the explanatory variables, (although they do so for HCE), we also estimate the models (6)
to (8) in first (and second) differences, i.e. we replace HCE, MORT and SR5 by �HCE,
�MORT and �SR5, (and �2HCE, �2MORT and �2SR5).

We estimate the dynamic panel model (8) by GMM, using both the difference-GMM-estimator
by Arellano and Bond (1991) and the system-GMM-estimator by Blundell and Bond (1998),
and show the results both for MORT to be either predetermined or endogenous. We present
this rather large number of regression results for the dynamic panel data models to show that
the familiar problem of unstable coefficients – depending heavily (even in their sign) on the
particular specification – does not apply in our data.

As the data set is a pseudo panel, and the respective cohort-age cells contain different numbers
of observations, the results from the simple fixed-effects panel estimation may not be efficient
and have to be weighted by the square root of the cohort size, see Deaton (1985). Because
in our panel the cohort size is not constant over time, we could use different weights for each
cohort-age cell. However, Inkmann et al. (1998) show that estimation results can be unstable
if the cohort size differs considerably and therefore propose to weight by the average weight
for each cohort. We therefore use weights that do not differ in the time dimension.

5 Regression Results

5.1 Unit root tests

We first employ the unit root tests by Harris and Tzavalis (1999) and by Im et al. (2003) without
and with different numbers of lags. Table 3 shows an overview of the results; the detailed
results can be found in Tables 8 to 10 in the Appendix. For the dependent variable HCE,
non-stationarity is clearly rejected. For MORT and SR5, non-stationarity in levels is never
rejected, as all p-values are very close to 1. For first differences, the results are ambiguous as
the null hypothesis is only rejected for some of the tests. For second differences, the null is
always rejected. Therefore, we not only present the results for the estimation in levels, but as a
robustness check in first and second differences as well.

Table 3: Unit root tests: Rejection of H0: non-stationarity

Men Women

level � �2 level � �2

HCE yes yes yes yes yes yes

MORT no yes/no yes no yes/no yes

SR5 no yes/no yes no yes/no yes

5.2 Estimation results

In Tables 4 and 5 we present the regression results, separately for men and women. In column
(1), results from the Intrinsic Estimator for the model with age-, cohort- and year-dummies
and MORT as defined in regression equation (6) is presented; in column (2), SR5 is added

10



(regression equation (7)). Columns (3) to (6) then show the results for the dynamic panel
model (regression equation (8)) with both MORT and SR5, estimated by the difference-
GMM-estimator due to Arellano and Bond (1991) and by the system-GMM-estimator due to
Blundell and Bond (1998). In all the GMM-estimations, HCEt�1 and SR5t are regarded to
be predetermined as they do not depend on the error term in period t. In (3) and (4) MORTt is
assumed to be predetermined, too, while in (5) and (6) we allow for MORTt to be endogenous.
To limit instrument proliferation, the number of instruments was reduced using the collapse-
option of STATA’s xtabond2-command, see Roodman (2006). Results with the full set of
instruments are, however, very similar.

These six models are estimated with the variables HCE, MORT and SR5 in levels – see
columns (1) to (6) – and in first differences (columns (7) to (12) in the middle part of the
table). Because not all unit root tests reject non-stationarity of the explanatory variables in
first differences, we also present the six models in second differences (columns (13) to (18)
in the bottom part of the table). However, for women the AR(2)-test is highly significant
(with a p-value < 0.001 for the difference GMM-estimator, and 0.002 for the system GMM-
estimator), which is a clear indicator that the model in second differences is misspecified for
women, so we present results in second differences only for men.

We first observe that the coefficients of mortality are positive and highly significant for men.
They suggest that expenditures for men in their last year of life are between 5 and 14 times as
high as for the average sickness fund member. These estimates are roughly in line with findings
from previous studies. E.g., Lubitz and Riley (1993) found that the 5 per cent decedents
account for 25-30 per cent of total Medicare expenditures. The Lubitz-Riley results imply that
decedents spend about 6 times as much as survivors. For women, the coefficients are positive,
but usually smaller and not always significant.

Longevity, measured by the predicted value of the 5-year survival rate, always has a positive
and significant impact on HCE, although the size of the coefficient varies according to the
specification. A value of 12, which seems to be a lower bound (for men), suggests that an
increase in the 5-year survival rate by 5 percentage points (which occurred for men over 70
and for women between 75 and 85 from 1997 to 2009) raises real daily per-capita HCE by
roughly 10 per cent.

None of these results depends on whether the mortality rate is treated as predetermined or en-
dogenous. If anything, the coefficient of mortality tends to be somewhat larger when mortality
is treated as endogenous than otherwise.

We now turn to the results of the age, cohort and time dummies. We present graphs for the
model in column (2) in Tables 4 and 5, with MORT and SR5 as additional variables. In
Figure 1, we observe that the age dummies show a familiar picture: a high value for newborns,
then a decline up to age 3, followed by a relatively flat portion up to age 45 (with somewhat
higher expenditures for women in child-bearing age), and then a steep rise until age 89. It is
remarkable that this pattern remains even though both the mortality rate and the 5-year survival
rate are held constant. Thus there seems to be an independent effect of age on HCE, in contrast
to the findings of the previous literature.

The coefficients of the cohort dummies are declining except for the first and last few cohorts,
which we observe only for a smaller number of years than the other cohorts, see Figure 2. The
general pattern confirms the well-known fact that more recent cohorts are healthier at a given
age and therefore need less medical care than older cohorts.
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Table 4: Regression Results for Men, dependent variable: daily HCE in levels (upper part), in
first differences (middle part), and in second differences (lower part)

Men, Levels

(1) (2) (3) (4) (5) (6)

GMM Dif. System Dif. Sys.

MORT endog. X X

MORT 68.26 58.30 70.17 30.01 75.56 37.25
(.000) (.000) (.000) (.000) (.000) (.000)

SR5 36.45 34.82 12.45 33.46 14.23
(.000) (.000) (.000) (.000) (.000)

HCEt�1 0.12 0.23 0.11 0.22
(.000) (.000) (.008) (.000)

AR(1) (.000) (.000) (.000) (.000)
AR(2) (.493) (.605) (.484) (.627)

Men, First Differences (�)

(7) (8) (9) (10) (11) (12)

GMM Dif. Sys. Dif. Sys.

MORT endog. X X

�MORT 60.86 56.22 56.54 55.03 83.78 77.18
(.000) (.000) (.000) (.000) (.000) (.000)

�SR5 13.83 16.32 15.16 12.46 12.08
(.015) (.001) (.022) (.018) (.049)

�HCEt�1 -0.02 -0.01 -0.03 -0.02
(.583) (.887) (.310) (.592)

AR(1) (.000) (.000) (.000) (.000)
AR(2) (.401) (.339) (.312) (.308)

Men, Second Differences (�2)

(13) (14) (15) (16) (17) (18)

GMM Dif. Sys. Dif. Sys.

MORT endog. X X

�2MORT 51.28 42.41 49.30 44.72 58.51 64.66
(.000) (.000) (.000) (.000) (.000) (.000)

�2SR5 21.84 12.36 15.13 11.51 13.12
(.000) (.002) (.002) (.004) (.006)

�2HCEt�1 -0.32 -0.25 -0.32 -0.23
(.000) (.000) (.000) (.000)

AR(1) (.000) (.000) (.000) (.000)
AR(2) (.602) (.613) (.970) (.149)

p-values in parentheses; bold figures: significant at ↵ = .05.
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Table 5: Regression Results for Women, dependent variable: daily HCE in levels (upper part),
in first differences (middle part), and in second differences (lower part)

Women, Levels

(1) (2) (3) (4) (5) (6)

GMM Dif. System Dif. Sys.

MORT endog. X X

MORT 27.22 26.24 15.20 33.68 15.25 41.38
(.055) (.001) (.245) (.000) (.245) (.000)

SR5 42.69 29.01 8.99 28.99 10.66
(.000) (.000) (.000) (.000) (.000)

HCEt�1 0.28 0.31 0.28 0.28
(.000) (.000) (.000) (.000)

AR(1) (.000) (.000) (.000) (.000)
AR(2) (.973) (.751) (.973) (.861)

Women, First Differences (�)

(7) (8) (9) (10) (11) (12)

GMM Dif. Sys. Dif. Sys.

MORT endog. X X

�MORT 33.64 20.38 3.24 4.99 8.46 7.90
(.000) (.053) (.703) (.523) (.431) (.384)

�SR5 15.77 19.97 18.22 19.43 18.01
(.000) (.000) (.000) (.000) (.000)

�HCEt�1 0.12 0.14 0.11 0.13
(.000) (.000) (.000) (.000)

AR(1) (.000) (.000) (.000) (.000)
AR(2) (.781) (.689) (.791) (.697)

p-values in parentheses; bold figures: significant at ↵ = .05.

Figure 3 shows the positive time trend for HCE. It also shows the impact of a major health
care reform that took effect in 2004. Depending on the model specification, the year dummies
indicate an annual growth rate of 1.95 to 2.32 per cent for men and 1.02 to 1.62 per cent for
women (see the last row of Table 6), which can be interpreted as the “pure time trend in real
per-capita HCE”, independent of demographic effects.

We conclude that the hypotheses stated in Section 3 are supported by the results for both sexes.
Since both the mortality rate and longevity have a (mostly) significantly positive effect on HCE,
the sign of the total effect of population ageing, which leads both to a decline in mortality and
an increase in longevity, is unclear. Therefore, we have to use simulation methods to determine
whether the total effect will be positive, given the demographic development predicted for
Germany.
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Figure 1: Age dummy coefficients for regression equation (7)

-10

-5

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

(a) Men

-10

-5

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

(b) Women

Figure 2: Cohort dummy coefficients for regression equation (7)
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Figure 3: Year dummy coefficients for regression equation (7)
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6 Estimating the Demographic Effect on Health Care Ex-
penditures

In the following, we do not attempt to forecast the development of health care expenditures in
Germany over the next decades. This would be a futile endeavour, because this depends to a
great extent on political decisions. Instead, we are trying to measure the purely demographic
impact on HCE by performing a counterfactual exercise in that we vary only the demographic
factors, holding everything else constant at the 2009 level. For ease of interpretation, we divide
the resulting values by the respective 2009 value of HCE, so that we can interpret the result as
the relative increase of HCE due to demographic change.

We proceed in three steps. We first consider only the effect of the reduction of mortality rates
(without its impact on the 5-year survival rates and the age distribution). To do so, we calculate
the age profiles of HCE and per capita HCE that would result from changing only the mortality
rates for all age groups to their values in 2020, 2030, 2040, 2050 and 2060, using the regression
results of the models with only MORT as an additional explanatory variable besides age, year
and cohort. Columns (1), (7) and (13) of the upper part of Tables 6 and 7 show that the well-
known red herring effect is present in our data as well: When the mortality rates decline in
the way predicted for the next decades and everything else stays the same, the age profiles
of HCE shift downwards because in each age bracket, fewer people are in their last year of
life, so that per capita HCE decrease. However, the overall impact is rather modest: With the
mortality rates of 2060, expenditures in 2009 for men would have been lower by at most 7.1
per cent, those for women by 3.2 per cent. Note that the calculations in this first step (columns
(1), (7) and (13)) serve only as a benchmark for comparison because considering the change in
mortality and ignoring the concomitant increase in survival rates of the elderly is inconsistent.

In the second step, we take into account that with falling mortality the 5-year survival rates
must rise, which by itself would raise HCE. We therefore calculate the age profiles of HCE and
per capita HCE that would result from changing both the mortality rates and the 5-year survival
rates to their values in 2020, 2030, . . . 2060, see columns (2)-(6), (8)-(12), and (14)-(18) in the
upper part of Table 6 and columns (2)-(6) and (8)-(12) in the upper part of Table 7. For men,
the total change in HCE resulting from this variation lies between minus 2.3 per cent (column
(11) of Table 6) and plus 12.6 per cent (column (2)). For women, the total change is always
positive and lies between 1 and 17 per cent (columns (4) and (2) of Table 7, respectively).

Thus we see that, depending on the estimation method used, the decline in HCE due to lower
mortality rates is either considerably mitigated or more than compensated by considering the
concomitant increase in the 5-year survival rates of older population groups. We emphasize
again that these results do not at all depend on how the multicollinearity problem is solved.

In the third step, we also set the age distribution to their levels in 2020 through 2060. These
results must be interpreted with caution because when we make use of the age dummy coeffi-
cients, we also have to decide how to treat the coefficients of the cohort dummies. However,
there is no natural way to extrapolate the cohort effects because it is not known how healthy
or unhealthy future cohorts will be. To make matters worse, there is no monotone trend in the
cohort coefficients which could be easily extrapolated (see Figure 2). We therefore did not use
any predicted (extrapolated) values for the cohorts but left them at their 2009 values, but this is
not much more than the application of the Principle of Insufficient Reason. The results of this
exercise can be found in the lower part of Tables 6 and 7. The numbers show that with the 2060
age composition (along with the 2060 mortality and survival rates), health care expenditures in
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2009 would have been between 27 and 55 per cent higher for men and between 25 and 53 per
cent higher for women, an effect that is considerably higher than the impact of mortality and
survival rates alone. The second line from the bottom in each of the Tables 6 and 7 contains the
results of converting the respective increases into annual growth rates, which can be interpreted
as “growth in HCE due to demographic change”. Considering both the changes in mortality
and in 5-year survival rates, these numbers lie between .47 and .87 for men and between .44
and .84 per cent for women.

In the last line of Tables 6 and 7 we present the pure time trend in real per-capita HCE, in-
dependent of demographic effects, calculated from the coefficients for the year dummies. It
can be assumed that this trend is to a great extent due to medical progress. The annual growth
rates lie slightly above 2 per cent for men and between 1.1 and 1.6 per cent for women and
are thus considerably larger than the purely demographic effect estimated above. If these two
effects are added up, the resulting growth rates lie between 2.5 and 3 per cent for men and
between 1.5 and 2.5 per cent for women, which is somewhat higher than common forecasts of
the growth rate of per capita income in the ageing German population. Thus they suggest that
demographic change and technical progress combined may after all present problems for the
financing of health care in Germany.

7 Conclusions and Caveats

In this paper, we have used a pseudo-panel of HCE data for Germany to demonstrate that
per-capita health care expenditures are significantly influenced by the age composition of the
population, by mortality rates and by the development of longevity, as measured by the age-
specific 5-year survival rates. We believe that the last effect, which is quite substantial, mirrors
the medical profession’s willingness to perform expensive or risky treatments on elderly pa-
tients if the patients can be expected to live long enough to enjoy the effects of the treatment.

The results of the simulations based on the regression coefficients show that if past trends con-
tinue, per-capita health care expenditures would rise by between 1.5 and 2 per cent per year
even without demographic change. Moreover, while we can confirm that simulations on the
basis of the population age structure alone are misleading, the same applies when only age-
specific mortality rates are added. The effect of rising longevity can not be ignored, either.
One way to take it into account is to include a measure of age-specific 5-year survival rates. In
sum, the (negative) effect of falling mortality rates on health care expenditures is at least com-
pensated and probably over-compensated by the (positive) effect of increasing 5-year survival
rates. Adding the effect of a changing age composition of the population, the total effect of
demographic change on health expenditures is estimated to amount to an annual growth rate
between .4 and .9 per cent, depending on which estimator is used.

The type of data employed for this study has important advantages, but also certain drawbacks.
To our knowledge, this is the first attempt to quantify the effect of rising longevity on the
development of health care expenditures over time. However, since we used age and sex group
averages instead of individual expenditure data, the well-known end-of-life effect on HCE
expenditures is accounted for only in an indirect form: by estimating the impact of the mortality
rate within a population group on average expenditures.

It can further be argued that mortality and survival rates themselves are influenced by HCE
and therefore endogenous. With respect to SR5, the endogeneity does not occur as we used its
predicted value instead of SR5 itself. For MORT , possible endogeneity is accounted for in
two of the four dynamic panel models (estimated by GMM), which had basically no effect on
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the regression results. This seems reasonable as one may argue that, unlike in individual data,
for group averages the causal effect of HCE on mortality should not be too strong. It does not
seem likely that the correlation of the variation in HCE and MORT is caused primarily by
the fact that tight rationing against a particular age-sex group as a whole in a certain year by
all physicians led to a higher mortality rate, but rather by a higher mortality rate of an age-sex
group causing higher expenditures.

We sum up by stating the main purpose of this paper, namely to examine whether ageing –
i.e. an increase of longevity alongside a fall in mortality rates – as such will increase health
expenditures, and the answer to this question is a clear “yes”. Moreover, independent of the
specification, the 5-year survival rate always has a positive and sizeable impact on health care
expenditures so that for Germany a Eubie Blake effect indeed exists.

Appendix

The following Tables 8 to 10 provide the unit root tests for the variables HCE, MORT and
SR5.
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